یک نیروگاه اتمی چگونه کار میکند

بسیاری از محصولات تولیدی واکنش شکافت هسته‌ای بشدت ناپایدارند و در نتیجه، قلب رآکتور محتوی مقادیر زیادی نوترون پرانرژی، پرتوهای گاما، ذرات بتا، همچنین ذرات دیگر است. هر جسمی که در رآکتور گذاشته شود تحت مباران این همه تابشهای متنوع قرار می‌گیرد.
یکی از موارد استعمال تابش رآکتور تولید پلوتونیوم ۲۳۹ است . این ایزوتوپ نیمه عمری در حدود ۲۴۰۰۰ سال دارد و به مقدار کمی در زمین یافت می‌شود. پلوتونیوم ۲۳۹ از لحاظ کارایی شکافت خاصیتی مشابه اورانیوم دارد. برای تولید پلوتونیوم ۲۳۹، ابتدا اورانیوم ۲۳۸ را در قلب رآکتور قرار می‌‌دهند که در نتیجه واکنشهایی که صورت می‌‌گیرد اورانیوم ۲۳۹ به وجود می‌‌آید. اورانیوم ۲۳۹ ایزوتوپی ناپایدار است که با نیمه عمری در حدود ۲۴ دقیقه، از طریق گسیل ذره بتا، به نپتونیوم ۲۳۹ تبدیل می‌شود. نپتونیوم ۲۳۹ نیز با نیمه عمر ۲/۴ روز و گسیل ذره بتا واپاشیده و به محصول نهایی یعنی پلوتونیوم ۲۳۹ تبدیل می‌شود. در این حالت، پلوتونیوم ۲۳۹ همچنان با مقادیری اورانیوم ۲۳۸ آمیخته است؛ اما این آمیزه چون از دو عنصر مختلف تشکیل شده است، بروش شیمیایی مناسب جدا سازی است.
امروزه، با استفاده از تابش رآکتور، صدها ایزوتوپ مفید می‌توان تولید کرد که بسیاری از این ایزوتو‌های مصنوعی را در پزشکی به کار می برند. آثار زیانبار انفجارهای اتمی و پرتوهای ناشی از آن باعث آلودگی آبهای زیرزمینی و زمینهای کشاورزی و حتی محصولات کشاورزی می‌شود؛ ولی با همه این مضرات، اورانیوم عنصری است ارزشمند، زیرا در کنار همه سوءاستفاده‌ها می‌‌توان از آن به بهترین نحو و مطابق با معیارهای بشردوستانه استفاده کرد. فراموش نکنید که از اورانیوم و پلوتونیوم می‌‌توان استفاده‌های صلح آمیز نیز داشت؛ زیرا از انرژی یک کیلوگرم اورانیوم ۲۳۵ می‌‌توان چهل هزار کیلووات ساعت الکتریسیته تولید کرد که معادل مصرف ده تن زغال سنگ یا ۵۰۰۰۰ گالن نفت است.

آشنایی با اجزای رآکتورهای هسته ای
 

در حالى که تولید انرژى با استفاده از سوختهاى فسیلى در جهان روز بروز گرانتر مى شود، برق هسته اى که در نیروگاههاى هسته اى و با استفاده از واکنش شکافت هسته اى تولید مى شود منبع بسیار خوبى براى تولید انرژى و جایگزینى آن با برق فسیلى به شمار مى رود. تولید برق به روش هسته اى - ضمن آنکه پایان ناپذیر است - گازهاى گلخانه اى هم تولید نمى کند. تنها مشکل آن زباله هاى هسته اى است که در صورتى که از آنها درست محافظت کنیم، عملاً هیچ ضررى براى محیط زیست ندارد.

رآکتورهاى شکافت:
 

بر اثر شکافت هسته هاى سنگین مثل اورانیوم و تبدیل آن به هسته هاى سبکتر و پرتوهای آلفا یا بتا و نوترون، مقدارى انرژى جنبشى هم آزاد مى شود. اگر جرم محصولات شکافت را از جرم ماده ابتدایی کم کنیم، مقدار ناچیزى باقى مى ماند. این مقدار ناچیز طبق معادله معروف «اینشتین»، E=mc2، تبدیل به انرژى جنبشى مى شود. گرماى تولید شده با شکافت در قلب رآکتور با میله هایى تنظیم مى شود. نوترونها تحریک کننده شکافت اند.
با قرار دادن جذب کننده هاى نوترونى بین اورانیوم مى توان میزان فرایند شکافت و سرعت آن و در نتیجه شدت گرماى تولیدشده را مهار کرد. گرماى حاصل با آب به بیرون از رآکتور منتقل مى شود. دماى آب درون چرخه تحت فشار گاهى به چندین برابر نقطه جوش مى رسد. در بیرون از رآکتور، این گرما آب موجود در منبع دیگر را بخار مى کند و بخار آب تولید شده با انرژى زیادى که دارد توربینهاى بخار را به حرکت در مى آورد و برق تولید مى شود.

قلب رآکتور:
 

فرایند شکافت معمولاً نوترونهاى سریع تولید مى کند؛ اما براى اینکه هسته اورانیوم شکافته شود، به نوترون کند نیاز است. براى این کار، از کندکننده هاى نوترونى استفاده مى شود. گرافیت و آب سنگین توان این کار را دارند.

واکنش زنجیره اى:
 

هر نوترون کند اورانیوم را مى شکافد؛ حاصل علاوه بر هسته هاى کوچکتر تعدادى نوترون است که خود هسته هاى اورانیوم دیگر را مى شکافد. به این فرایند واکنش زنجیره اى مى گویند که اساس کار رآکتور است.

نخستین رآکتورهاى هسته اى:
 

فرمى و زیلارد نخستین کسانى بودند که توانستند واکنش زنجیره اى کاملی را در رآکتوری هسته اى انجام دهند. آنها در دهه ۱۹۴۰ که روى طرح ساخت بمب هسته اى براى ایالات متحده (منهتن) کار مى کردند در دانشگاه شیکاگو و در آزمایشگاهشان این کار را انجام دادند؛ اما در سال ۱۹۵۵ که اندیشه اقتصادى شدن انرژى هسته اى رواج یافت، آنها این کشف را در اداره اختراعات و اکتشافات ایالات متحده ثبت کردند.

انواع رآکتورها:
 

رآکتورها از لحاظ سرعت عملشان به دو دسته تقسیم مى شوند:
1 ـ رآکتورهاى گرمایى؛ که سرعت کمى دارند و فرایند شکافت و تولید گرما در آنها به آرامى انجام مى شود. بیشتر این رآکتورها استفاده صلح آمیز دارند.
۲- رآکتورهاى سریع: هدف اصلى این رآکتورها تولید سوخت لازم براى سلاحهاى هسته اى است. پلوتونیوم و اورانیوم ۲۳۵ از محصولات این رآکتورهاست

راکتورهای هسته ای
 

مقدمه:
 

شکافت هسته ای اتم اورانیم 235 در واقع در اثر نفوذ یک نوترون حرارتی به درون هسته یک اتم سنگین است که باعث شکافت آن به دوپاره از هسته های جدید و سبکتر می گردد. در ضمن در عمل شکافت به طور متوسط 2-3 نوترون ایجاد شده و مقداری انرژی تابشی گاما آزاد می گردد. انرژی سینتیک محصولات شکافت و نوترون ها به مواد اطراف خود از طریق برخورد و جذب پرتو به تولید گرما منجر خواهد شد. انرژی آزاد شده از هر شکافت حدود 11-10*3.2 ژول است در حالیکه تولید انرژی از منابع متعارف سوخت فسیلی که حاصل تشکیل یک مولکول دی اکسید کربن هست حدود
19-10*6.7 می باشد.
نوکلوییدهای غیر قابل شکافت هم در طی فرآیندهای بالا با دریافت و یا برخورد با یک نوترون با ایزوتوپ هایی به تعداد نوترون بالاتر تبدیل خواهد شد. بدین ترتیب رادیونوکلوئید های جدیدی خواهیم داشت که درمیان آنها پاره های شکافت مواد شکافت پذیر جدیدی مثل اورانیم235، پلوتونیم 239 وجود داشته و پلوتونیم 241 نیز به طور مصنوعی می تواند زایش پیدا کند.
این فرآیندهای فیزیکی در راکتورهای هسته ای اتفاق می افتد. درون میله های سوخت فرآیندهای شکافت و زایش در اثر واکنش زنجیره ای صورت می گیرد و واکنش با تولید نوترون به طور دائم ادامه می یابد.
راکتورهای هسته برای اهداف فراوانی طراحی و ساخته می شوند که بعضی از آنها عبارتند از:
- راکتورهای تولید حرارت و برق
- راکتورهای کِشنده
- راکتورهای تحقیقاتی
- راکتورهای تولید پلوتونیم
- راکتورهای اختصاصی برای مقاصدی همچون ساخت زیردریایی، فضا پیما، آب شیرین کن و...
ساختار عمومی راکتورهای هسته ای:
بخش مرکزی راکتور هسته ای جدا از آزمایشگاه ها، بخش های جانبی و خدماتی آن از یک ساختمان ویژه ای تشکیل شده است که ویژگی آن نه فقط به دلیل جادادن وسایل خاص راکتور، بلکه به لحاظ استحکام، ویژگی مصالح ساختمانی، ایزوله یا منزوی بودن از محیط زیست، مقاومت در مقابل زلزله، خوردگی و دسترسی به سرویس های مخصوص کاملاً استثنایی است.
یک راکتور هسته ای جدا از سازه های ساختمانی به طور کلی از قسمت های زیر تشکیل شده است:
1 ـ مجموعه های سوخت
2 ـ کند کننده ها
3 ـ خنک کننده ها
4 ـ سیستم های ایمنی
5 ـ میله های کنترل
6 ـ حفاظ های مختلف
در اینجا به بحث مختصری درباره ی هرکدام از این قسمت ها پرداخته می شود:
1 ـ مجموعه های سوخت
سوخت یک راکتور هسته ای را ممکن است شامل آنچه که در قلب راکتور به عنوان سوخت وجود دارد در نظر گرفت. به عبارت واقعی تر سوخت راکتور در چندین مجموعه سوخت و هر مجموعه متشکل از چندین میله سوخت و هر میله شامل تعداد معینی از قرص ها یا حبه های مواد شکافت پذیر هسته ای مثل اورانیم و یا در بعضی موارد پلوتونیم می باشد. میله های سوخت در راکتور به صورت صفحه ای(Plate) و غنای اورانیم 235 تا 95 درصد می رسد. هرمیله ی سوخت از غلاف زیر کالوی و شامل قطعاتی از قرص های دی اکسید اورانیم است. زیر کالوی 2 تا 4 یک آلیاژ زیر ******یم با عیار کمی از قلع، آهن، کرم و نیکل است؛ میله های سوخت ممکن است به صورت انفرادی در جاهای مخصوص خود گذاشته شود و یا ممکن است به صورت مجموعه های سوخت درون قلب راکتور به طور منظم قرارگیرند.
سوخت راکتور مخصوصاً راکتورها مخصوصا راکتورهای قدرت به طور اصولی یا از عناصری شامل اتم های قابل شکافت تامین می شوند و یا از اتم های ایزوتروپ عناصری که قابلیت تبدیل به اتم های قابل شکافت را دارند بنابراین اتم های قابل شکافت عبارتند از:

اورانیم 235 ، پلوتونیم 239 و اورانیم 233
 

اتم های مستعد با قابلیت تبدیل به اتم های قابل شکافت عبارتند از: اورانیم 238 و توریم 232
سوخت راکتورها از نظر فرآیندهای استفاده در راکتورها بر اساس استراتژی کشور ممکن است به یکی از سه روش زیر عمل گردد:
• یکبار استفاده از اورانیم و ارسال سوخت مصرف شده به انبار موقت و سپس دفن همیشگی آن
• استفاده چندباره از اورانیم و برقراری سیکل اورانیم-پلوتونیم با اعمال عملیات باز فرآوری روی آن
• استفاده از سیکل اورانیم-توریم به این معنی که توریم 232 ابتدا تبدیل به اورانیم 233 می شود و سپس این اورانیم به عنوان سوخت در راکتورها مورد استفاه قرار می گیرد.

2 ـ کند کننده ها
 

کند کننده ماده ای است که برای کند کردن نوترون های سریع تا انرژی های حرارتی در راکتورهای هسته ای مورد استفاده قرار می گیرند. گاهی اوقات همین کندکننده ها عمل سرد کنندگی راکتور را هم انجام می دهد. موادی که می توانند به عنوان کننده مورد استفاده قرارگیرند عبارتند از: آب، آب سنگین، گرافیت و گاهی اوقات هم بریلیوم آب به دلیل داشتن هیدروژن که عنصری سبک است و نیز فراوانی و ارزانی آن مورد استفاده قرار می گیرد. به طور کلی هرچه ماده کندکننده دارای قابلیت کندکنندگی بهتری برای نوترون ها باشد درجه کمتری از سوخت غنی شده مورد نیاز خواهد بود. آب سنگین بهتر از گرانیت و گرانیت بهتر از آب دارای خاصیت کندکنندگی است، ولی تولید آب سنگین نسبتاً گران است و گرانیت هم تاثیرات نامطلوبی در نتیجه در نتیجه پرتوگیری از خود بروز می دهد.
مشخصات یک کند کننده خوب:
• نوترون ها نباید با کندکننده واکنش نشان دهد، چون در اینصورت بازدهی تولید نوترون کاهش یافته و راکتور به سمت خاموشی می رود.

• نوترون ها باید در محیط کندکننده ها در فاصله های کوتاهی پس از چند برخود کند شوند زیرا در غیر اینصورت، نوترون توسط اورانیم 238 گیر افتاده و موجب تشدید ناخالصی های کند کننده می شود که این وضعیت اقتصادی نیست.
• گرچه کند کننده ها باید ارزان باشند ولی در عین حال خواص ساختاری آنها باید رضایت بخش هم باشد.
• کندکننده باید با سایر مواد ساختاری راکتور سازگار باشد و نباید خواص خورندگی، سایندگی و یا تحت تاثیر پرتوهای رادیواکتیو قرار گیرد.
• کندکننده طی فرآیند دائمی بمباران های نوترونی نباید تحت تاثیرات و تغییرات نامطلوب فیزیکی یا شیمیایی قرار گیرد.
• یک کند کننده خوب باید به طور مؤثر نوترون های سریع حاصل از شکافت را به نوترون های حرارتی تبدیل کند.

3 ـ خنک کننده ها:
 

خنک کننده برای انتقال حرارت از میله های سوخت به طور مستقیم مورد استفاده قرار می گیرد. این فقط در صورتی است که خنک کننده نقش کند کننده هم داشته باشد. در مواردی که ماده کند کننده دیگری مورد استفاده است در این صورت انتقال حرارت معمولا توسط خنک کننده مستقیماً از کندکننده و غیر مستقیم یا در بعضی موارد مستقیم از میله های سوخت انجام می پذیرد. اکثراً آب به عنوان سرد کننده مورد استفاده قرار می گیرد. به هر حال گاهی اوقات آب سنگین، فلزات مایع(سدیم و پتاسیم) یا حتی گازها(دی اکسیدکربن) هم ممکن است مورد استفاده واقع شوند. امروزه در اکثر راکتورهای تجاری آب به عنوان سردکننده مورد استفاده قرار می گیرد. در اینصورت آب علاوه بر نقش سرد کنندگی وظیفه کند کنندگی را نیز انجام می دهد.
خواص ایده آل برای یک خنک کننده:
• سطح مقطع جذب نوترونی کوچکی داشته باشد، در این صورت میزان تابش رادیواکتیویته در حین کارگردانی اپراتوری کاهش می یابد.

• فراوان و ارزان باشد.
• غیرخورنده یا خوردگی کمی داشته باشد، چون لوله ها و ساختارهای دیگر که با آن در تماس هستند باید سالم بمانند.
• ضریب انتقال حرارتی بالا داشته باشد. به این ترتیب حرارت به سهولت به سرد کننده انتقال یافته و جابجا خواهد شد.
• ویسکوزیته یا غلظت کم داشته باشد که سبب کاهش مصرف کمتر برق برای پمپ کردن آن می شود.
• دارای توانایی نگهداری درجه حرارت های بالا به صورت مایع، حتی اگر تحت فشار باشد.
خنک کننده هایی که در راکتورهای تحقیقاتی یا تجاری استفاده شده اند عبارتند از:
• آب سبک یا سنگین(اولی شامل دو اتم هیدروژن است و دومی شامل دو یا یک اتم دوتریم می باشد)
• فلز مایع (مثل سدیم، پتاسیم یا آلیاژی از ترکیب هر دو)
• مواد آلی مایع (مثل اتانول، پروپان، پنتان، هوا یا گاز دی اکسید کربن)

4 ـ سیستم های ایمنی در راکتور
 

وظایف دستگاه ها و سیستم های کنترل(I&C) در راکتورهای هسته ای شامل اندازه گیری، کنترل، تنظیم، چک کردن و حفاظت است. عملیات اجرایی راکتور بر اساس نیازهای فیزیکی، شیمیایی، فرآیندهای مهندسی و اپراتوری است که به عهده سیستم ها و دستگاه های آن گذاشته شده است. سیستم دستگاهی و کنترل ممکن است به دوبخش ایمنی و اپراتوری یا کارگردانی تقسیم شوند. حفاظت راکتور و محیط زیست به عهده سیستم های ایمنی گذاشته شده است. این سیستم¬ها غالبا در مواقع ضروری کارمی کنند و در دوران بهره برداری و خارج از وضعیت اضطراری اکثرا غیرفعال هستند. قابلیت عملکرد این دستگاه های نصب شده اضافی دائما بطور خود مونیتورینگ و تست های دوره ای بررسی می شوند. کنترل قدرت راکتور معمولا در بخشی از I&C ایمنی ملحوظ و منظور می گردد. کنترل و دستگاه های اوپراتوری شامل تمام سیستم هایی است که کارگردانی و یا عملکرد طبیعی و بدون خطر یک راکتور هسته ای را تضمین و مطمئن می سازد. به همین دلیل ممکن است آنرا به گروه های اجرایی وکارهای پیچیده ای که در خط فرآیند است تقسیم نمود.

5 ـ میله های کنترل
 

میله های کنترل برای تنظیم توزیع قدرت در راکتور در زمان اپراتوری مورد استفاده قرار می گیرند. مهمترین وظیفه میله های کنترل که بین میله های سوخت قرار می گیرند، برای خاموش کردن یا متوقف کردن فرآیند شکافت هسته ای در زمان هایی که لازم است، چنین عملی انجام شود. خاموش کردن راکتور می تواند از طریق کنترل اتوماتیک یا توسط اپراتور انجام پذیرد. میله های کنترل از موادی ساخته شده اند که خیلی سریع با جذب نوترون ها واکنش های هسته ای را متوقف می کنند. موادی که به این منظور استفاده می شوند عبارتند از کربور نقره، ایندیم، کادمیم و هافنیوم. میله های کنترل به داخل وخارج از میله های سوخت حرکت کرده و نرخ واکنش هسته ای را تنظیم می نمایند.
در راکتورهای هسته ای دونوع کنترل وجود دارد:
• کنترل آرام، برای جلوگیری از به وجود آمدن قدرت زیاد و برقراری قدرت متعادل راکتور. این کنترل بیشتر توسط محلول های برن و یا افزایش یا کاهش آن در کندکننده ها اعمال می گردد.
• کنترل سریع، برای کاهش سریع قدرت راکتور و یا خاموش کردن راکتور از مجموعه میله های کنترل که ممکن است به صورت دستی یا اتوماتیک باشند استفاده می شود. در مواقع اضطراری، میله های کنترل با شتاب به صورت اتوماتیک به داخل میله های سوخت سقوط می کنند و سبب خاموشی راکتور می گردند.

6 ـ حفاظت راکتور
 

وظیفه سیستم حفاظت از راکتور اطمینان از آشکارسازی تمام حوادث پیش بینی شده در طراحی و اعتماد از امکان انجام عملیات حفاظتی می باشد. این برنامه و تمهیدات باید اطمینان دهد راکتور همیشه بطور ایمن کار می کند. حوادث، بخش هایی از یک حادثه بزرگتر هستند که به کارگردانی راکتور دیکته می کند که به دلایل ایمنی کار راکتور باید قطع شود. بنابراین داده های آنالوگ سیستم ارزیاب، فرآیندهای ویژه منجر به حادثه احتمالی را شناسایی کرده و از طریق یک سیستم دیگر علائمی را تولید می کند که نشان می دهد حدود آن نارسایی ها و یا اشکالات از حد معینی فراتر رفته است. این علائم واقعی آغاز انحراف یا لغزش راکتور از حالت طبیعی است که ترجیحا تمام عملیات کارگردانی را تحت کنترل درمی آورد و متعاقبا فعال شدن تمام سیستم های مهندسی ایمنی را برای کنترل حادثه، باعث می گردد. در تمام موارد، شناسایی و آشکارسازی مبتنی بر فرآیندهای متفاوتی است که هر نوع ابهامی را در رابطه با سیستم آشکارسازی حادثه و قصورهای رایج در سیستم ارزیابی داده ها رفع می کند. وسایل و ابزار اضافی تکمیلی چنان، اطمینانی را فراهم می آورند که با حفاظت به موقع راکتور اثرات سوء حادثه های احتمالی کاهش یابد. وسایل اضافی مبتنی بر انجام وظیفه های انحصاری، به طور فیزیکی از نظر محل قرارگیری طوری از یکدیگر جداشده اند که در مقابل حوادث بیرونی می توانند سالم باقی بمانند. تابلوی وضعیت سیستم حفاظت راکتور را در تمام زمان های کار عادی راکتور و شرایط اضطراری به طور بسیار روشن و واضح به پرسنل کارگردانی اعلام می نماید. تست های دوره ای با دستگاه های مخصوص تست کردن انجام می شوند. قصورهای آشکار و نهان در کانال های مربوطه توسط خویش گزارشگر اعلام می شوند.
نوع دیگر حفاظت با نام حفاظت رادیولوژیکی و کنترل پرتوگیری وجود دارد که وظیفه آن عبارتست از کاهش پرتوگیری و آلودگی داخل راکتورها و محیط زیست در کمترین حد ممکن. سیستم های مختلف کنترل پرتوگیری، اندازه گیری و ثبت پرتوها را در تمام مناطق کنترل شده انجام می دهد. سیستم های مختلف کنترل پرتوگیری امکان بررسی میزان دز تابش محلی، منطقه ای، محیط زیست، پرتوگیری پرسنلی و همچنین میزان نشت پسمان های مایع، گاز و جامد را فراهم می کند. سیستم های کنترل پرتوگیری، دستگاه های نصب شده دائمی هستند که بخشی از مجموعه سیستم I&C محسوب می شوند. مونیتورهای ثابت بررسی نمونه های محلی را بطور دائم و یا متناوب انجام می دهند و مونیتورهای متحرک شامل دستگاه های اندازه گیری پرتو در محل های متفاوت نصب هستند.
نیروگاههای هسته ای حدود 17 درصد برق را تأمین می کنند برخی کشورها برای تولید نیروی الکتریکی خود، وابستگی بیشتری به انرژی هسته ای دارند. براساس آمار آژانس انرژی اتمی، 75 درصد برق کشور فرانسه در نیروگاههای هسته ای تولید می شود و در ایالات متحده، نیروگاههای هسته ای 15 درصد برق را تأمین می کنند. بیش از چهارصد نیروگاه هسته ای در سراسر دنیا وجود دارد که بیش از یکصد عدد آنها در ایالات متحده واقع شده است. یک نیروگاه هسته ای بسیار شبیه به یک نیروگاه سوخت فسیلی تولید کننده انرژی الکتریکی است و تنها تفاوتی که دارد، منبع گرمایی تولید بخار است. این وظیفه در نیروگاه هسته ای برعهده رآکتور هسته ای است.

رآکتور هسته ای
 

همه رآکتورهای هسته ای تجاری از طریق شکافت هسته ای گرما تولید می کنند. همانطور که می دانید، شکافت اورانیوم نوترون های زیادی آزاد می کند، بیشتر از آنکه لازم باشد. اگر شرایط واکنش مساعد باشد فرآیند به طور خود به خودی انجام می شود و یک زنجیره از شکافت های هسته ای به وجود می آید. نوترونهایی که از فرآیند شکافت آزاد می شوند، بسیار سریعند و هسته های دیگر نمی توانند آنها را به راحتی جذب کنند. از این رو در اکثر رآکتورها قسمتی به نام کند کننده نوترون وجود دراد که در آن از سرعت نوترونها کاسته می شود و در نتیجه نوترونها به راحتی جذب می شوند. چنین نوترونهایی آن قدر کند می شوند تا با هسته راکتور به تعادل گرمایی برسند. نام گذاری این نوترونها به نوترونهای گرمایی یا نوترونهای کند هم از همین رو است.
مقدار انرژی گرمایی که در یک رآکتور پارامتر بحرانی است و با کنترل آن می توان رآکتور را در حالت عادی نگاه داشت. این کار با تنظیم تعداد میله های کنترل درون رآکتور صورت می گیرد. میله کنترل از مواد جذب کننده نوترون ساخته شده است و با افزایش یا کاهش جذب نوترون، می توان گسترش واکنش زنجیره ای را کاهش یا افزایش داد. البته با استفاده از کند کننده های نوترون یا تغییر دادن نحوه قرار گیری میله های سوخت هم می توان انرژی خروجی رآکتور را کنترل کرد.

طراحی یک رآکتور
 

رآکتورهای هسته ای برای انجام واکنش های هسته ای در مقیاس وسیع طراحی می شوند. گرما، اتمهای جدید و تابش بسیار شدید نوترون، محصولات واکنش انجام شده در رآکتور هستند و بسته به استفاده ای که از رآکتور می شود، از یکی از محصولات استفاده می شود. در یک نیروگاه هسته ای تولید برق از انرژی گرمایی تولید شده برای چرخاندن توربین و درنهایت تولید انرژی الکتریکی استفاده می شود. در برخی رآکتورهای نظامی و آزمایشی بیشتر از باریکه نوترون پر انرژی استفاده می شود تا مواد ساده را به عناصر کم یاب و جدیدی تبدیل کنند.
هدف از رآکتور هر چه باشد، برای به دست آوردن این محصولات لازم است یک واکنش هسته ای زنجیره ای به طور پیوسته ادامه یابد. برای ادامه یک واکنش زنجیره ای هم رآکتور باید در حالت بحرانی یا فوق بحرانی قرار داشته باشد. کند کننده و وسیله کنترل در فراهم آوردن چنین شرایطی نقش بسیار مهمی برعهده دارند.
رآکتوری که از کند کننده استفاده می کند، رآکتور گرمایی یا رآکتور کند نامیده می شود. این رآکتورها با توجه به نوع کند کننده ای که مورد استفاده قرار می گیرد طبقه بندی می شوند. آب معمولی ( آب سبک )، آب سنگین و گرافیت، مواد رایج کند کننده هستند. البته گرافیت مشکلات فراوانی را به وجود می آورد و بسیار خطرآفرین است، مانند حادثه انفجار چرنوبیل یا آتش سوزی وانیدسکیل.
رآکتورهایی که از کند کننده ها استفاده نمی کنند، رآکتورهای سریع خوانده می شوند. در این نوع رآکتورها فشار ذرات نوترون بسیار بالا است و از این رو می توان برخی واکنش های هسته ای را در آنها انجام داد که ترتیب دادن آنها در رآکتور کند بسیار مشکل است. شرایط خاصی که در رآکتورهای سریع وجود دارد، سبب می شود بتوان هسته اتم توریوم و برخی ایزوتوپ های دیگر را به سوخت هسته ای قابل استفاد تبدیل کرد. چنین رآکتوری می تواند سوختی بیش از حد نیاز خود را تولید کند و به همین دلیل به آن رآکتور سوخت ساز هم گفته می شود.
در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی می شود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده می شود. اما آب نوعی کند کننده هم محسوب می شود و از این رو نمی تواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده می شود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد می کنند.
در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم می کند و آن را به بخار تبدیل می کند. بخار آب توربین بخار را به حرکت در می آورد ، توربین نیز ژنراتور را می چرخاند و به این ترتیب انرژی تولید می شود. این آب و بخار آن در تماس مستقیم با راکتور هسته ای است و از این رو در معرض تابش های شدید رادیواکتیو قرار می گیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد می کنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده می کنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.

انواع رآکتورهای گرمایی
 

در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هسته ای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لوله های منتقل کننده آن، دیواره های حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، می توان آنها را به سردسته تقسیم کرد.
الف – کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده می شوند و می توان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد.
ب – مخزن بخار پرفشار داغ، رایج ترین نوع رآکتور است و در اغلب نیروگاههای هسته ای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده می شود. این مخزن می تواند به عنوان لایه حفاظتی نیز عمل کند.
ج – خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده می شود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار می گیرد و معمولاً از هلیوم برای آن استفاده می شود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید می کند که گاز خنک کن می تواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی می فرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.

بقیه اجزای نیروگاه هسته ای
 

غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هسته ای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد.
مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه می شود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل می کند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار می گیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفته اند و کارکنان می توانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است.
در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت می شود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مس

/ 0 نظر / 35 بازدید